Adaptive Optics

Adaptive Optics

What is Adaptive Optics?

Often used in astronomical applications, Adaptive Optics (AO) or sometimes called wavefront sensing (WFS) is a technique to measure wavefront errors or distortions, and correct the resulting image in real time.

In astronomy systems with AO, a reference star that is brighter is usually used in place of the object of interest to measure the shape of the optical wavefront. The reference star would have to be in close proximity to the object of interest:

What do we offer?

Xenics offers various types of SWIR camera in four wavelength ranges:

1. 500 to 1700 nm (visible-enhanced InGaAs)
2. 900 to 1700 nm (standard InGaAs)
3. 900 to 2350 nm (T2SL)
4. 900 to 2500 nm (T2SL)

 

See Related Products below for a full list of our cameras that are compatible with this application.

Какие особенности необходимы?

  • Short exposure time
    A short exposure time (< 1 ms) has to be used to “freeze” the effect of atmospheric turbulence.
  • High frame rates and low image lag
    High frame rates and low latency are required to send the correction info to the deformable mirror, in order to correct the wavefronts in real time.
  • Sensitivity
    For relatively bright guide stars, high sensitivity detectors are needed to guarantee a high enough signal to noise ratio on the WFS.

Are you looking for more information? 

Let us know. We are happy to help.

Contact us

Документы

Белые бумаги
Short-wave infrared adaptive optics and applications In this article, we have discuss the basic working principle of AO in astronomy, microscopy, retinal imaging and laser communication application.

Extreme compact size and low weight

Given the extremely compact size and low weight of the Xenics XS-1.7-320 SWIR camera it was extremely easy to integrate it into our existing optical setup.

University of Strathclyde